Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 2.955
1.
J Neurointerv Surg ; 2024 May 02.
Article En | MEDLINE | ID: mdl-38697808

BACKGROUND: The relationship between post-endovascular thrombectomy (EVT) blood pressure (BP) and outcomes in patients with acute ischemic stroke (AIS) remains contentious. We aimed to explore whether this association differs with different cerebral perfusion statuses post-EVT. METHODS: In a multicenter observational study of patients with AIS with large vessel occlusion who underwent EVT, we enrolled those who accepted CT perfusion (CTP) imaging within 24 hours post-EVT. We recorded post-EVT systolic (SBP) and diastolic BP. Patients were stratified into favorable perfusion and unfavorable perfusion groups based on the hypoperfusion intensity ratio (HIR) on CTP. The primary outcome was good functional outcome (90-day modified Rankin Scale score of ≤3). Secondary outcomes included early neurological deterioration, infarct size growth, and symptomatic intracranial hemorrhage. RESULTS: Of the 415 patients studied (mean age 62 years, 75% male), 233 (56%) achieved good functional outcomes. Logistic regression showed that post-EVT HIR and 24-hour mean SBP were significantly associated with functional outcomes. Among the 326 (79%) patients with favorable perfusion, SBP <140 mmHg was associated with a higher percentage of good functional outcomes compared with SBP ≥140 mmHg (68% vs 52%; aOR 1.70 (95% CI 1.00 to 2.89), P=0.04). However, no significant difference was observed between SBP and functional outcomes in the unfavorable perfusion group. There was also no discernible difference between SBP and secondary outcomes across the different perfusion groups. CONCLUSIONS: In patients with favorable perfusion post-EVT, SBP <140 mmHg was associated with good functional outcomes, which underscores the need for further investigations with larger sample sizes or a more individualized BP management strategy. CLINICAL TRIAL REGISTRATION: ChiCTR1900022154.

2.
J Cancer Res Clin Oncol ; 150(5): 246, 2024 May 09.
Article En | MEDLINE | ID: mdl-38722401

BACKGROUND: Recent studies have emphasized the importance of the biological processes of different forms of cell death in tumor heterogeneity and anti-tumor immunity. Nonetheless, the relationship between cuproptosis and lung adenocarcinoma (LUAD) remains largely unexplored. METHODS: Data for 793 LUAD samples and 59 normal lung tissues obtained from TCGA-LUAD cohort GEO datasets were used in this study. A total of 165 LUAD tissue samples and paired normal lung tissue samples obtained from our hospital were used to verify the prognostic value of dihydrolipoamide S-acetyltransferase (DLAT) and dihydrolipoamide branched chain transacylase E2 (DBT) for LUAD. The cuproptosis-related molecular patterns of LUAD were identified using consensus molecular clustering. Recursive feature elimination with random forest and a tenfold cross-validation method was applied to construct the cuproptosis score (CPS) for LUAD. RESULTS: Bioinformatic and immunohistochemistry (IHC) analyses revealed that 13 core genes of cuproptosis were all significantly elevated in LUAD tissues, among which DBT and DLAT were associated with poor prognosis (DLAT, HR = 6.103; DBT, HR = 4.985). Based on the expression pattern of the 13 genes, two distinct cuproptosis-related patterns have been observed in LUAD: cluster 2 which has a relatively higher level of cuproptosis was characterized by immunological ignorance; conversely, cluster 1 which has a relatively lower level of cuproptosis is characterized by TILs infiltration and anti-tumor response. Finally, a scoring scheme termed the CPS was established to quantify the cuproptosis-related pattern and predict the prognosis and the response to immune checkpoint blockers of each individual patient with LUAD. CONCLUSION: Cuproptosis was found to influence tumor microenvironment (TME) characteristics and heterogeneity in LUAD. Patients with a lower CPS had a relatively better prognosis, more abundant immune infiltration in the TME, and an enhanced response to immune checkpoint inhibitors.


Adenocarcinoma of Lung , Immune Checkpoint Inhibitors , Lung Neoplasms , Humans , Prognosis , Immune Checkpoint Inhibitors/therapeutic use , Adenocarcinoma of Lung/genetics , Adenocarcinoma of Lung/drug therapy , Adenocarcinoma of Lung/immunology , Adenocarcinoma of Lung/pathology , Lung Neoplasms/genetics , Lung Neoplasms/drug therapy , Lung Neoplasms/immunology , Lung Neoplasms/pathology , Male , Female , Biomarkers, Tumor/genetics , Tumor Microenvironment/immunology , Tumor Microenvironment/genetics , Gene Expression Regulation, Neoplastic , Middle Aged
3.
J Virol ; : e0043424, 2024 May 01.
Article En | MEDLINE | ID: mdl-38690875

The globally reemerging respiratory pathogen enterovirus D68 (EV-D68) is implicated in outbreaks of severe respiratory illness and associated with acute flaccid myelitis. However, there remains a lack of effective treatments for EV-D68 infection. In this work, we found that the host Toll-like receptor 7 (TLR7) proteins, which function as powerful innate immune sensors, were selectively elevated in expression in response to EV-D68 infection. Subsequently, we investigated the impact of Vesatolimod (GS-9620), a Toll-like receptor 7 agonist, on EV-D68 replication. Our findings revealed that EV-D68 infection resulted in increased mRNA levels of TLR7. Treatment with Vesatolimod significantly inhibited EV-D68 replication [half maximal effective concentration (EC50) = 0.1427 µM] without inducing significant cytotoxicity at virucidal concentrations. Although Vesatolimod exhibited limited impact on EV-D68 attachment, it suppressed RNA replication and viral protein synthesis after virus entry. Vesatolimod broadly inhibited the replication of circulating isolated strains of EV-D68. Furthermore, our findings demonstrated that treatment with Vesatolimod conferred resistance to both respiratory and neural cells against EV-D68 infection. Overall, these results present a promising strategy for drug development by pharmacologically activating TLR7 to initiate an antiviral state in EV-D68-infected cells selectively.IMPORTANCEConventional strategies for antiviral drug development primarily focus on directly targeting viral proteases or key components, as well as host proteins involved in viral replication. In this study, based on our intriguing discovery that enterovirus D68 (EV-D68) infection specifically upregulates the expression of immune sensor Toll-like receptor 7 (TLR7) protein, which is either absent or expressed at low levels in respiratory cells, we propose a potential antiviral approach utilizing TLR7 agonists to activate EV-D68-infected cells into an anti-viral defense state. Notably, our findings demonstrate that pharmacological activation of TLR7 effectively suppresses EV-D68 replication in respiratory tract cells through a TLR7/MyD88-dependent mechanism. This study not only presents a promising drug candidate and target against EV-D68 dissemination but also highlights the potential to exploit unique alterations in cellular innate immune responses induced by viral infections, selectively inducing a defensive state in infected cells while safeguarding uninfected normal cells from potential adverse effects associated with therapeutic interventions.

4.
Innovation (Camb) ; 5(3): 100603, 2024 May 06.
Article En | MEDLINE | ID: mdl-38745762

The vaccine-induced innate immune response is essential for the generation of an antibody response. To date, how Ad5-vectored vaccines are influenced by preexisting anti-Ad5 antibodies during activation of the early immune response remains unclear. Here, we investigated the specific alterations in GP1,2-specific IgG-related elements of the early immune response at the genetic, molecular, and cellular levels on days 0, 1, 3, and 7 after Ad5-EBOV vaccination. In a causal multiomics analysis, distinct early immune responses associated with GP1,2-specific IgG were observed in Ad5-EBOV recipients with a low level of preexisting anti-Ad5 antibodies. This study revealed the correlates of the Ad5-EBOV-induced IgG response and provided mechanistic evidence for overcoming preexisting Ad5 immunity during the administration of Ad5-vectored vaccines.

5.
Opt Lett ; 49(10): 2769-2772, 2024 May 15.
Article En | MEDLINE | ID: mdl-38748157

Measurement resolution and dynamic range of conventional optical fiber sensors are often mutually restricted. In this work, an in-fiber chirped Fabry-Perot cavity (interferometer) is proposed, for the first time to our knowledge, to resolve the conflict between the resolution and dynamic range. The chirped Fabry-Perot interferometer is constructed by two chirped fiber Bragg gratings inscribed in the opposite directions, resulting in a gradually varied (i.e., chirp) cavity length for different reflection wavelengths. As such, the interference spectrum exhibits high figure of merit (FOM) and large free spectrum range (FSR) at long and short wavelength regions, respectively, enabling high-resolution and large-dynamic-range measurement simultaneously. Temperature tests are then carried out to confirm the validity of the solution. The proposed sensing schema may be developed further and find vital applications in biomedicine fields such as endosomatic temperature monitoring of living bodies. The proposed concept of chirped Fabry-Perot interferometer can provide breakout ideas for other sensing scenarios where high-resolution and large-dynamic range are demanded and can be further generalized to other measurands or even free-space interference metrologies.

6.
Anal Chem ; 2024 May 15.
Article En | MEDLINE | ID: mdl-38748451

Unraveling bacterial identity through Raman scattering techniques has been persistently challenging due to homogeneously amplified Raman signals across a wide variety of bacterial molecules, predominantly protein- or nucleic acid-mediated. In this study, we present an approach involving the use of silver nanoparticles to completely and uniformly "mask" adsorption on the surface of bacterial molecules through sodium borohydride and sodium chloride. This approach enables the acquisition of enhanced surface-enhanced Raman scattering (SERS) signals from all components on the bacterial surface, facilitating rapid, specific, and label-free bacterial identification. For the first time, we have characterized the identity of a bacterium, including its DNA, metabolites, and cell walls, enabling the accurate differentiation of various bacterial strains, even within the same species. In addition, we embarked on an exploration of the origin and variability patterns of the main characteristic peaks of Gram-positive and Gram-negative bacteria. Significantly, the SERS peak ratio was found to determine the inflection point of accelerated bacterial death upon treatment with antimicrobials. We further applied this platform to identify 15 unique clinical antibiotic-resistant bacterial strains, including five Escherichia coli strains in human urine, a first for Raman technology. This work has profound implications for prompt and accurate identification of bacteria, particularly antibiotic-resistant strains, thereby significantly enhancing clinical diagnostics and antimicrobial treatment strategies.

7.
Soft Matter ; 20(19): 4007-4014, 2024 May 15.
Article En | MEDLINE | ID: mdl-38690757

Biology exploits biomacromolecular phase separation to form condensates, known as membraneless organelles. Despite significant advancements in deciphering sequence determinants for phase separation, modulating these features in vivo remains challenging. A promising approach inspired by biology is to use post-translational modifications (PTMs)-to modulate the amino acid physicochemistry instead of altering protein sequences-to control the formation and characteristics of condensates. However, despite the identification of more than 300 types of PTMs, the detailed understanding of how they influence the formation and material properties of protein condensates remains incomplete. In this study, we investigated how modification with myristoyl lipid alters the formation and characteristics of the resilin-like polypeptide (RLP) condensates, a prototypical disordered protein with upper critical solution temperature (UCST) phase behaviour. Using turbidimetry, dynamic light scattering, confocal and electron microscopy, we demonstrated that lipidation-in synergy with the sequence of the lipidation site-significantly influences RLPs' thermodynamic propensity for phase separation and their condensate properties. Molecular simulations suggested these effects result from an expanded hydrophobic region created by the interaction between the lipid and lipidation site rather than changes in peptide rigidity. These findings emphasize the role of "sequence context" in modifying the properties of PTMs, suggesting that variations in lipidation sequences could be strategically used to fine-tune the effect of these motifs. Our study advances understanding of lipidation's impact on UCST phase behaviour, relevant to proteins critical in biological processes and diseases, and opens avenues for designing lipidated resilins for biomedical applications like heat-mediated drug elution.


Peptides , Peptides/chemistry , Hydrophobic and Hydrophilic Interactions , Insect Proteins/chemistry , Insect Proteins/metabolism , Phase Transition , Amino Acid Sequence , Protein Processing, Post-Translational
8.
Genome Biol ; 25(1): 116, 2024 May 07.
Article En | MEDLINE | ID: mdl-38715020

BACKGROUND: Structural variations (SVs) have significant impacts on complex phenotypes by rearranging large amounts of DNA sequence. RESULTS: We present a comprehensive SV catalog based on the whole-genome sequence of 1060 pigs (Sus scrofa) representing 101 breeds, covering 9.6% of the pig genome. This catalog includes 42,487 deletions, 37,913 mobile element insertions, 3308 duplications, 1664 inversions, and 45,184 break ends. Estimates of breed ancestry and hybridization using genotyped SVs align well with those from single nucleotide polymorphisms. Geographically stratified deletions are observed, along with known duplications of the KIT gene, responsible for white coat color in European pigs. Additionally, we identify a recent SINE element insertion in MYO5A transcripts of European pigs, potentially influencing alternative splicing patterns and coat color alterations. Furthermore, a Yorkshire-specific copy number gain within ABCG2 is found, impacting chromatin interactions and gene expression across multiple tissues over a stretch of genomic region of ~200 kb. Preliminary investigations into SV's impact on gene expression and traits using the Pig Genotype-Tissue Expression (PigGTEx) data reveal SV associations with regulatory variants and gene-trait pairs. For instance, a 51-bp deletion is linked to the lead eQTL of the lipid metabolism regulating gene FADS3, whose expression in embryo may affect loin muscle area, as revealed by our transcriptome-wide association studies. CONCLUSIONS: This SV catalog serves as a valuable resource for studying diversity, evolutionary history, and functional shaping of the pig genome by processes like domestication, trait-based breeding, and adaptive evolution.


Genome , Genomic Structural Variation , Animals , Sus scrofa/genetics , Polymorphism, Single Nucleotide , Swine/genetics , Chromosome Mapping
9.
Adv Mater ; : e2403549, 2024 May 09.
Article En | MEDLINE | ID: mdl-38723270

It is a pressing need to develop new energy materials to address the existing energy crisis. However, screening optimal targets out of thousands of materials candidates remains a great challenge. Herein, we propose and validate an alternative concept for highly effective materials screening based on dual-atom salphen catalysis units. Such an approach simplifies the design of catalytic materials and reforms the trial-and-error experimental model into a building-blocks-assembly like process. Firstly, density functional theory (DFT) calculations were performed on a series of potential catalysis units which were possible to synthesize. Then, machine learning (ML) was employed to define the structure-performance relationship and acquire chemical insights. Afterwards, the projected catalysis units were integrated into covalent organic frameworks (COFs) to validate the concept Electrochemical tests confirm that Ni-SalphenCOF and Co-SalphenCOF are promising conductive agent-free oxygen evolution reaction (OER) catalysts. This work provides a fast-tracked strategy for design and development of functional materials, which serves as a potentially workable framework for seamlessly integrating DFT calculations, ML, and experimental approaches. This article is protected by copyright. All rights reserved.

10.
Adv Mater ; : e2401716, 2024 May 02.
Article En | MEDLINE | ID: mdl-38697614

Nonreciprocal topological edge states based on external magnetic bias have been regarded as the last resort for genuine unidirectional wave transport, showing superior robustness over topological states with preserved time-reversal symmetry. However, fast and efficient reconfigurability of their trajectory has remained a formidable challenge due to the difficulty in controlling the spatial distribution of magnetic fields over large areas and short times. Here, this persistent issue is solved by leveraging the rich topology of unitary scattering networks, and achieve fast steering of nonreciprocal topological transport at an interface between a Chern and an anomalous topological insulator, without having to control a magnetic field. Such interface can be drawn by doping the network with scatterers located at the center of each link, whose level of reflection is electrically tuned. With experiments in the GHz range, the possibility to actively steer the way of unidirectional edge states is demonstrated, switching the transmission path thousands of times per second in a fully-robust topological heterostructure. The approach represents a significant step towards the realization of practical reconfigurable topological meta-devices with broken time-reversal symmetry, and their application to future robust communication technologies.

11.
Opt Lett ; 49(9): 2237-2240, 2024 May 01.
Article En | MEDLINE | ID: mdl-38691688

This Letter reports on investigations of novel, to the best of our knowledge, NiV(Ni93V7)/Ti multilayer mirrors for the operation in the wavelength region of 350-450 eV. Such mirrors are promising optical components for the Z-pinch plasma diagnostic. The NiV/Ti multilayers show superior structural and optical performance compared to conventional Ni/Ti multilayers. Replacing Ni with NiV in multilayers decreases interface widths and enhances the contrast of the refractive index between the absorber and spacer layers. The improvement of interface quality contributes to the enhancement in reflectance. Under the grazing incidence of 13°, a peak reflectivity of 25.1% at 429 eV is achieved for NiV/Ti multilayers, while 17.7% at 427 eV for Ni/Ti.

12.
Mar Environ Res ; 198: 106530, 2024 Apr 28.
Article En | MEDLINE | ID: mdl-38691972

Seawater intrusion has been a globally significant environmental issue. This paper comprehensively reviews and highlights the research methods of seawater intrusion in China, recommending the potential application of novel radioactive radium-radon isotopes. Geochemical and geophysical techniques have been extensively utilized in studying seawater intrusion in China, including methods such as hydrochemical analysis, groundwater level observations, geophysical survey techniques, and isotope tracing. The former three methodologies boast a lengthier historical application in seawater intrusion field, while the radium-radon tools in isotope tracing, as newcomers, can specifically indicate crucial scientific questions such as seawater intrusion rates, salt groundwater age, water-rock reactions, and preferential flow dynamics. However, it is imperative to acknowledge the limitations inherent in the utilization of radium-radon tools within the realm of seawater intrusion research, as with any other methodologies. Strategic integration of radium-radon tools with other methodologies will propel advancements in the investigation of seawater intrusion in China. While the primary focus is on research methods in China, insights gained from novel radium-radon tools could have broader value for seawater intrusion research and coastal management globally.

13.
Research (Wash D C) ; 7: 0342, 2024.
Article En | MEDLINE | ID: mdl-38694200

Recently, the development of the Metaverse has become a frontier spotlight, which is an important demonstration of the integration innovation of advanced technologies in the Internet. Moreover, artificial intelligence (AI) and 6G communications will be widely used in our daily lives. However, the effective interactions with the representations of multimodal data among users via 6G communications is the main challenge in the Metaverse. In this work, we introduce an intelligent cross-modal graph semantic communication approach based on generative AI and 3-dimensional (3D) point clouds to improve the diversity of multimodal representations in the Metaverse. Using a graph neural network, multimodal data can be recorded by key semantic features related to the real scenarios. Then, we compress the semantic features using a graph transformer encoder at the transmitter, which can extract the semantic representations through the cross-modal attention mechanisms. Next, we leverage a graph semantic validation mechanism to guarantee the exactness of the overall data at the receiver. Furthermore, we adopt generative AI to regenerate multimodal data in virtual scenarios. Simultaneously, a novel 3D generative reconstruction network is constructed from the 3D point clouds, which can transfer the data from images to 3D models, and we infer the multimodal data into the 3D models to increase realism in virtual scenarios. Finally, the experiment results demonstrate that cross-modal graph semantic communication, assisted by generative AI, has substantial potential for enhancing user interactions in the 6G communications and Metaverse.

14.
Phytomedicine ; 129: 155627, 2024 Apr 17.
Article En | MEDLINE | ID: mdl-38696924

BACKGROUND: Sepsis is a life-threatening organ dysfunction caused by an exaggerated response to infection. In the lungs, one of the most susceptible organs, this can manifest as acute respiratory distress syndrome (ARDS). Shenfu (SF) injection is a prominent traditional Chinese medicine used to treat sepsis. However, the exact mechanism of its action has rarely been reported in the literature. PURPOSE: In the present study, we detected the protective effect of SF injection on sepsis-induced ARDS and explored its underlying mechanism. METHODS: We investigated the potential targets and regulatory mechanisms of SF injections using a combination of network pharmacology and RNA sequencing. This study was conducted both in vivo and in vitro using a mouse model of ARDS and lipopolysaccharide (LPS)-stimulated MLE-12 cells, respectively. RESULTS: The results showed that SF injection could effectively inhibit inflammation, oxidative stress, and apoptosis to alleviate LPS-induced ARDS. SF inhibited the PI3K-AKT pathway, which controls autophagy and apoptosis. Subsequently, MLE-12 cells were treated with 3-methyladenine to assess its effects on autophagy and apoptosis. Additional experiments were conducted by adding rapamycin, an mTOR antagonist, or SC79, an AKT agonist, to investigate the effects of SF injection on autophagy, apoptosis, and the PI3K-AKT pathway. CONCLUSION: Overall, we found that SF administration could enhance autophagic activity, reduce apoptosis, suppress inflammatory responses and oxidative stress, and inhibit the PI3K-AKT pathway, thus ameliorating sepsis-induced ARDS.

15.
Phytomedicine ; 129: 155510, 2024 Mar 11.
Article En | MEDLINE | ID: mdl-38696921

BACKGROUND: Gut microbiota plays a critical role in the pathogenesis of depression and are a therapeutic target via maintaining the homeostasis of the host through the gut microbiota-brain axis (GMBA). A co-decoction of Lilii bulbus and Radix Rehmannia Recens (LBRD), in which verbascoside is the key active ingredient, improves brain and gastrointestinal function in patients with depression. However, in depression treatment using verbascoside or LBRD, mechanisms underlying the bidirectional communication between the intestine and brain via the GMBA are still unclear. PURPOSE: This study aimed to examine the role of verbascoside in alleviating depression via gut-brain bidirectional communication and to study the possible pathways involved in the GMBA. METHODS: Key molecules and compounds involved in antidepressant action were identified using HPLC and transcriptomic analyses. The antidepressant effects of LBRD and verbascoside were observed in chronic stress induced depression model by behavioural test, neuronal morphology, and synaptic dendrite ultrastructure, and their neuroprotective function was measured in corticosterone (CORT)-stimulated nerve cell injury model. The causal link between the gut microbiota and the LBRD and verbascoside antidepressant efficacy was evaluate via gut microbiota composition analysis and faecal microbiota transplantation (FMT). RESULTS: LBRD and Verbascoside administration ameliorated depression-like behaviours and synaptic damage by reversing gut microbiota disturbance and inhibiting inflammatory responses as the result of impaired intestinal permeability or blood-brain barrier leakiness. Furthermore, verbascoside exerted neuroprotective effects against CORT-induced cytotoxicity in an in vitro depression model. FMT therapy indicated that verbascoside treatment attenuated gut inflammation and central nervous system inflammatory responses, as well as eliminated neurotransmitter and brain-gut peptide deficiencies in the prefrontal cortex by modulating the composition of gut microbiota. Lactobacillus, Parabacteroides, Bifidobacterium, and Ruminococcus might play key roles in the antidepressant effects of LBRD via the GMBA. CONCLUSION: The current study elucidates the multi-component, multi-target, and multi-pathway therapeutic effects of LBRD on depression by remodeling GMBA homeostasis and further verifies the causality between gut microbiota and the antidepressant effects of verbascoside and LBRD.

16.
J Hazard Mater ; 472: 134474, 2024 Apr 29.
Article En | MEDLINE | ID: mdl-38696961

Body size is a key life-history trait of organisms, which has important ecological functions. However, the relationship between soil antibiotic resistance gene (ARG) distribution and organisms' body size has not been systematically reported so far. Herein, the impact of organic fertilizer on the soil ARGs and organisms (bacteria, fungi, and nematode) at the aggregate level was analyzed. The results showed that the smaller the soil aggregate size, the greater the abundance of ARGs, and the larger the body size of bacteria and nematodes. Further analysis revealed significant positive correlations of ARG abundance with the body sizes of bacteria, fungi, and nematodes, respectively. Additionally, the structural equation model demonstrated that changes in soil fertility mainly regulate the ARG abundance by affecting bacterial body size. The random forest model revealed that total phosphorus was the primary soil fertility factor influencing the body size of organisms. Therefore, these findings proposed that excessive application of phosphate fertilizers could increase the risk of soil ARG transmission by increasing the body size of soil organisms. This study highlights the significance of organisms' body size in determining the distribution of soil ARGs and proposes a new disadvantage of excessive fertilization from the perspective of ARGs.

17.
Nat Commun ; 15(1): 3985, 2024 May 11.
Article En | MEDLINE | ID: mdl-38734677

Pentamidine and melarsoprol are primary drugs used to treat the lethal human sleeping sickness caused by the parasite Trypanosoma brucei. Cross-resistance to these two drugs has recently been linked to aquaglyceroporin 2 of the trypanosome (TbAQP2). TbAQP2 is the first member of the aquaporin family described as capable of drug transport; however, the underlying mechanism remains unclear. Here, we present cryo-electron microscopy structures of TbAQP2 bound to pentamidine or melarsoprol. Our structural studies, together with the molecular dynamic simulations, reveal the mechanisms shaping substrate specificity and drug permeation. Multiple amino acids in TbAQP2, near the extracellular entrance and inside the pore, create an expanded conducting tunnel, sterically and energetically allowing the permeation of pentamidine and melarsoprol. Our study elucidates the mechanism of drug transport by TbAQP2, providing valuable insights to inform the design of drugs against trypanosomiasis.


Aquaglyceroporins , Cryoelectron Microscopy , Melarsoprol , Molecular Dynamics Simulation , Pentamidine , Trypanosoma brucei brucei , Trypanosoma brucei brucei/metabolism , Aquaglyceroporins/metabolism , Aquaglyceroporins/chemistry , Melarsoprol/metabolism , Melarsoprol/chemistry , Pentamidine/chemistry , Pentamidine/metabolism , Biological Transport , Trypanocidal Agents/chemistry , Trypanocidal Agents/metabolism , Trypanocidal Agents/pharmacology , Protozoan Proteins/metabolism , Protozoan Proteins/chemistry , Humans
18.
Front Immunol ; 15: 1375931, 2024.
Article En | MEDLINE | ID: mdl-38736892

Objective: This study aimed to establish an effective prognostic model based on triglyceride and inflammatory markers, including neutrophil-to-lymphocyte ratio (NLR), lymphocyte-to-monocyte ratio (LMR), and platelet-to-lymphocyte ratio (PLR), to predict overall survival (OS) in patients with nasopharyngeal carcinoma (NPC). Additionally, we aimed to explore the interaction and mediation between these biomarkers in their association with OS. Methods: A retrospective review was conducted on 259 NPC patients who had blood lipid markers, including triglyceride and total cholesterol, as well as parameters of peripheral blood cells measured before treatment. These patients were followed up for over 5 years, and randomly divided into a training set (n=155) and a validation set (n=104). The triglyceride-inflammation (TI) score was developed using the random survival forest (RSF) algorithm. Subsequently, a nomogram was created. The performance of the prognostic model was measured by the concordance index (C-index), time-dependent receiver operating characteristic (ROC) curve, and decision curve analysis (DCA). The interaction and mediation between the biomarkers were further analyzed. Bioinformatics analysis based on the GEO dataset was used to investigate the association between triglyceride metabolism and immune cell infiltration. Results: The C-index of the TI score was 0.806 in the training set, 0.759 in the validation set, and 0.808 in the entire set. The area under the curve of time-dependent ROC of TI score in predicting survival at 1, 3, and 5 years were 0.741, 0.847, and 0.871 respectively in the training set, and 0.811, 0.837, and 0.758 in the validation set, then 0.771, 0.848, and 0.862 in the entire set, suggesting that TI score had excellent performance in predicting OS in NPC patients. Patients with stage T1-T2 or M0 had significantly lower TI scores, NLR, and PLR, and higher LMR compared to those with stage T3-T3 or M1, respectively. The nomogram, which integrated age, sex, clinical stage, and TI score, demonstrated good clinical usefulness and predictive ability, as evaluated by the DCA. Significant interactions were found between triglyceride and NLR and platelet, but triglyceride did not exhibit any medicating effects in the inflammatory markers. Additionally, NPC tissues with active triglyceride synthesis exhibited high immune cell infiltration. Conclusion: The TI score based on RSF represents a potential prognostic factor for NPC patients, offering convenience and economic advantages. The interaction between triglyceride and NLR may be attributed to the effect of triglyceride metabolism on immune response.


Nasopharyngeal Carcinoma , Nomograms , Triglycerides , Humans , Male , Female , Retrospective Studies , Triglycerides/blood , Nasopharyngeal Carcinoma/mortality , Nasopharyngeal Carcinoma/immunology , Nasopharyngeal Carcinoma/diagnosis , Nasopharyngeal Carcinoma/blood , Middle Aged , Prognosis , Adult , Nasopharyngeal Neoplasms/mortality , Nasopharyngeal Neoplasms/diagnosis , Nasopharyngeal Neoplasms/immunology , Nasopharyngeal Neoplasms/blood , Inflammation/immunology , Inflammation/blood , Aged , Biomarkers, Tumor/blood , ROC Curve , Neutrophils/immunology , Neutrophils/metabolism , Blood Platelets/metabolism , Blood Platelets/immunology , Lymphocytes/immunology , Lymphocytes/metabolism
19.
Food Funct ; 15(9): 4862-4873, 2024 May 07.
Article En | MEDLINE | ID: mdl-38587236

Intestinal infections are strongly associated with infant mortality, and intestinal immunoglobulin A (IgA) is important to protect infants from intestinal infections after weaning. This study aims to screen probiotics that can promote the production of intestinal IgA after weaning and further explore their potential mechanisms of action. In this study, probiotics promoting intestinal IgA production were screened in weanling mouse models. The results showed that oral administration of Bifidobacterium bifidum (B. bifidum) FL228.1 and Bifidobacterium bifidum (B. bifidum) FL276.1 significantly enhanced IgA levels in the small intestine and upregulated the expression of a proliferation-inducing ligand (APRIL) and its upstream regulatory factor toll-like receptor 4 (TLR4). Furthermore, B. bifidum FL228.1 upregulated the relative abundance of Lactobacillus, while B. bifidum FL276.1 increased the relative abundance of Marvinbryantia and decreased Mucispirillum, further elevating intestinal IgA levels. In summary, B. bifidum FL228.1 and B. bifidum FL276.1 can induce IgA production in the intestinal tract of weanling mice by promoting intestinal APRIL expression and mediating changes in the gut microbiota, thus playing a significant role in enhancing local intestinal immunity in infants.


Bifidobacterium bifidum , Gastrointestinal Microbiome , Immunoglobulin A , Probiotics , Tumor Necrosis Factor Ligand Superfamily Member 13 , Animals , Probiotics/pharmacology , Probiotics/administration & dosage , Mice , Bifidobacterium bifidum/physiology , Tumor Necrosis Factor Ligand Superfamily Member 13/genetics , Tumor Necrosis Factor Ligand Superfamily Member 13/metabolism , Weaning , Intestinal Mucosa/metabolism , Intestinal Mucosa/immunology , Male , Intestines/immunology , Intestines/microbiology , Female , Toll-Like Receptor 4/metabolism , Toll-Like Receptor 4/genetics , Mice, Inbred BALB C
20.
PLoS One ; 19(4): e0300835, 2024.
Article En | MEDLINE | ID: mdl-38652719

BACKGROUND: Previous observational studies have demonstrated a connection between the risk of Type 2 diabetes mellitus (T2DM) and gastrointestinal problems brought on by Helicobacter pylori (H. pylori) infection. However, little is understood about how these factors impact on T2DM. METHOD: This study used data from the GWAS database on H. pylori antibodies, gastroduodenal ulcers, chronic gastritis, gastric cancer, T2DM and information on potential mediators: obesity, glycosylated hemoglobin (HbA1c) and blood glucose levels. Using univariate Mendelian randomization (MR) and multivariate MR (MVMR) analyses to evaluate the relationship between H. pylori and associated gastrointestinal diseases with the risk of developing of T2DM and explore the presence of mediators to ascertain the probable mechanisms. RESULTS: Genetic evidence suggests that H. pylori IgG antibody (P = 0.006, b = 0.0945, OR = 1.0995, 95% CI = 1.023-1.176), H. pylori GroEL antibody (P = 0.028, OR = 1.033, 95% CI = 1.004-1.064), gastroduodenal ulcers (P = 0.019, OR = 1.036, 95% CI = 1.006-1.068) and chronic gastritis (P = 0.005, OR = 1.042, 95% CI = 1.012-1.074) are all linked to an increased risk of T2DM, additionally, H. pylori IgG antibody is associated with obesity (P = 0.034, OR = 1.03, 95% CI = 1.002-1.055). The results of MVMR showed that the pathogenic relationship between H. pylori GroEL antibody and gastroduodenal ulcer in T2DM is mediated by blood glucose level and obesity, respectively. CONCLUSION: Our study found that H. pylori IgG antibody, H. pylori GroEL antibody, gastroduodenal ulcer and chronic gastritis are all related to t T2DM, and blood glucose level and obesity mediate the development of H. pylori GroEL antibody and gastroduodenal ulcer on T2DM, respectively. These findings may inform new prevention and intervention strategies for T2DM.


Diabetes Mellitus, Type 2 , Helicobacter Infections , Helicobacter pylori , Mendelian Randomization Analysis , Humans , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/microbiology , Diabetes Mellitus, Type 2/genetics , Helicobacter Infections/complications , Helicobacter Infections/microbiology , Antibodies, Bacterial/blood , Gastrointestinal Diseases/microbiology , Gastrointestinal Diseases/complications , Obesity/complications , Obesity/microbiology , Genome-Wide Association Study , Peptic Ulcer/microbiology , Peptic Ulcer/epidemiology , Gastritis/microbiology , Gastritis/complications , Chaperonin 60/genetics , Risk Factors
...